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Abstract

We propose HDR-NeRF--, a method of learning high
dynamic range (HDR) view synthesis from a set of low
dynamic range (LDR) views with unknown and varying
exposure and white balance. Our method not only ren-
ders LDR views that match the ground-truth exposure and
white balance, but also renders novel HDR views with-
out ground-truth supervision. HDR-NeRF-- extends HDR-
NeRF method in two different ways. First, the exposure
parameters are learnable and are optimized separately for
each color band. Secondly, we constrain the tone mapping
function to be monotonically increasing — meaning that a
higher logarithmic radiance corresponds to a brighter pixel
value. A quantitative evaluation on benchmark datasets
shows that our method outperforms both HDR-NeRF and
HDR-Plenoxels in LDR rendering quality.

1. Introduction

Recent studies in rendering radiance fields using deep
neural networks — termed neural radiance field (NeRF) —
have produced high-quality novel views limited to a low
dynamic range [12]. Real-world scenes exceed the dynamic
range of the camera, so it has been desirable to reconstruct
HDR scenes from the LDR views. An extension to NeRF
called HDR-NeRF is able to recover the high dynamic range
neural radiance field from a set of varying exposure multi-
view LDR images [5]. However, this method requires prior
knowledge of the exposure time and consistency in the
white balance between training viewpoints, which is not al-
ways attainable outside of experimental settings. An HDR
radiance fields method called HDR-Plenoxels solves this
problem by modeling the physical camera pipeline with
explicit radiometric functions in a learnable tone-mapping
function [6]. Extended from a well-optimized voxel-based
radiance field method called Plenoxels [3], HDR-Plenoxels
achieves HDR rendering with fast convergence speed.

We propose a novel method called HDR-NeRF-- to re-
cover the HDR neural radiance field with unknown expo-
sures and varying from LDR images. Since our primary
focus is the fidelity of HDR view rendering, we extend our
method from the original NeRF architecture, rather than ap-
plying a voxel-based approach like Plenoxels [3, 6]. Unlike
HDR-NeRF, where the exposure times are read from EXIF
metadata, we learn the exposure settings from scratch, and
model the camera physical pipeline with a more compre-
hensive tone-mapper which handles varying exposure time,
aperture, ISO and white balance.

In our initial experiments with learnable exposure pa-
rameters, we found that sometimes the radiance map would
be inverted at the end of training. To address this issue,
we enforce a monotonic constraint on the tone-mapping
function. The HDR-NeRF method assumes that the tone-
mapping function is monotonic, without enforcing this con-
straint in their architecture design [5].

To evaluate our method, we use datasets from HDR-
NeRF [5] and HDR-Plenoxels [6]. We compare our method
against HDR-NeRF on scenes from HDR-NeRF datasets,
and we compare our method against HDR-Plenoxels on
scenes from HDR-Plenoxels datasets. We provide quanti-
tative and qualitative results to justify our main technical
contributions. In LDR view rendering, our method outper-
formed baseline methods on average. In HDR view ren-
dering, our method can reveal the under- and over-exposed
regions in the scenes. Our contributions are summarized as
follows:

1. We propose an extension to HDR-NeRF to learn HDR
neural radiance fields from LDR images of unknown
and varying exposure and white balance.

2. We introduce a method to ensure the learned tone-
mapping function is monotonically increasing.

3. We outperform previous methods in LDR rendering
accuracy.



2. Related work

Neural Radiance Fields. NeRF [12] represents a 3D
scene by an implicit continuous function that maps a 3D
position and 2D ray direction to a color and density. A
pixel is synthesized by integrating over samples along the
ray. NeRF-W [9] uses a per-image embedding vector to
represent the changes in scene appearance, effectively han-
dling variation in both exposure settings and illumination,
a technique has been adopted in many subsequent methods

(CL. [L1,15]).

High Dynamic Range Neural Radiance Fields. HDR-
NeRF [5] attempts to capture high dynamic ranges in the
real world by explicitly modeling the camera processing
pipeline. Specifically, HDR-NeRF adds a learnable tone-
mapper that models the camera response function (CRF).
HDR-NeRF uses ground-truth information about exposure
time to render HDR radiance maps [5]. However, the ex-
posure times of input viewpoints are not always available,
such as when using photos from the Internet, or frames
extracted from a video. In addition, HDR-NeRF cannot
handle varying white balance, which is often observed in
casually-captured images and videos with auto-white bal-
ance enabled.

High Dynamic Range Plenoxels. HDR-Plenoxels [6]
uses a highly-optimized voxel-based volume rendering
pipeline introduced in Plenoxels [3] method to recovers
HDR neural radiance fields. HDR-Plenoxels learns the CRF
and per-image exposure parameters during training. Simi-
lar to our method, HDR-Plenoxels does not require ground-
truth information about the camera settings, and they handle
varying exposure and white balance. However, their method
is designed more for fast training and rendering rather than
high-quality view synthesis, as they use explicit representa-
tions for both the radiance field and the tone mapping func-
tion.

3. HDR Neural Radiance Fields without
known exposures

In this section, we explain our method HDR-NeRF-- for
reconstructing high dynamic range neural radiance fields
from multi-view images of unknown and varying exposure
and white balance.

3.1. Scene representation

Similar to NeRF, our scenes are represented as a radi-
ance field F' within bounded 3D volumes. However, while
NeRF’s radiance field F' outputs the colors and densities,
our radiance field F' outputs the radiance e and density o of

the given ray r:
(e(r),o(r)) = F(r) (D
3.2. Learned tone-mapping and exposures

We use a multi-layer MLP g to estimate the camera re-
sponse function (CRF) of a camera. While HDR-NeRF
obtains the exposure time from the EXIF metadata, our
method represents exposure parameters as a learnable vec-
tor of three coefficients corresponding to the three color
channels R, G, and B. Specifically, we assume that the expo-
sure time, aperture, ISO gain, and white-balance of a view
can all be modeled by a per-channel multiplier to the radi-
ance e. Let A € R? be the exposure parameters of a view.
The tone-mapping function f maps the radiance e of ray r
to into the colors ¢ given A :

c(r, A) = f(diag(A)e(r)) 2

Following the CRF calibration method by Debevec and
Malik [2], we optimize our tone-mapping function in the
logarithmic radiance domain:

c(r,A) = g(lne(r) +1InA) 3)

To ensure that the learned function g is monotonic and
invertible, we replace the MLP from HDR-NeRF with a
monotonic MLP. To constrain an MLP to be monotonic, it is
sufficient to use strictly positive weights and strictly mono-
tonic activation functions [4].

3.3. Neural rendering

Similar to HDR-NeRF, we use a conventional volume
rendering technique [7] to render the color of each ray. To
render HDR views, we skip the tone-mapping operation af-
ter obtaining the logarithmic radiance.

3.4. Optimization

Color reconstruction loss. Similar to NeRF, we mini-
mize the mean squared error (MSE) between rendered LDR
views to ground-truth LDR views on both the coarse model
and the fine model:

Le=) [[ec(r,A) —c(r, )3 + [[es(r, X) — c(r, N)[[3

reR
“)
where c is the ground-truth color of each ray, ¢. and ¢;
are the predicted colors from the coarse and fine models,
respectively.

Unit exposure loss. Similar to HDR-NeRF, our method
also fixes the scale factor o to which the radiance e is re-
covered. We fix the value of g(0) to be 0.5, the midpoint of
the normalized pixel value on real-world scenes. We define
our exposure loss to be:

Ly = lg(0) = 0.5][3 5)



Finally, our loss function is the combination of the color
reconstruction loss and the unit exposure loss:

where w,, is the weight of unit exposure loss. We choose
0.5 to be a default value of w,,

4. Experiments
4.1. Experimental settings

We use a similar architecture to HDR-NeRF [5]. We use
an MLP with eight layers and 256 channels to predict the
radiance and the density at points in the volume. Our tone-
mapper consists of a one-layer MLP of width 128 for each
channel. To enforce the monotonic constraint to the tone-
mapper, we take the absolute value of the tone-mapper’s
weights and use the ReLLU activation function'. We use the
Adam optimizer [8] with a learning rate that decays expo-
nentially from 5 x 1074 to 5 x 1075, We optimize a model
for 200K iterations on a single NVIDIA Tesla V100 GPU,
which runs for approximately 16 hours.

4.2. Evaluation metrics and datasets

Datasets. We use four real scenes from the HDR-NeRF
[5] to evaluate our method’s ability to learn the HDR radi-
ance fields from LDR images of varying exposure. These
scenes were captured using a digital SLR camera, using ex-
posure bracketing with five different exposure times. White
balance is kept fixed in this dataset.

We use datasets from the HDR-Plenoxels [6] to evaluate
our method’s ability to learn HDR radiance fields from LDR
images of varying exposure and white balance. The HDR-
Plenoxel datasets consists of five synthetic scenes generated
from Blender and four real scenes captured from a digital
SLR camera using exposure and white balance bracketing.

Metrics. We employ three metrics for our quantita-
tive comparison between LDR synthesized views and the
ground-truth views: PSNR, SSIM, and LPIPS [16]. Higher
PSNR and SSIM values are better, and a lower LPIPS value
is better. However, our metrics are not calculated on the
entire test view. Following the evaluation methodology of
HDR-Plenoxels [6], since we cannot predict the exposure
parameters on test views, we use the left half of the test
image for training and learning the exposure parameters.
Then, we evaluate the performance on the unseen right half.
Our tone-mapping operator for HDR qualitative results is
p-law, a simple and established tone-mapping operator used
by HDR-NeRF [5] and other works [, 10, 13]. This tone-
mapping operator is M (E) = log(1l + pE)/log(1 + u)
where E is the HDR pixel value normalized to the range

IReLU is not strictly monotonic but in practice, we found it produces
the best results.

[0,1], and p is the compression factor, which is set to 1.0
for best-looking results.

4.3. Evaluation results

HDR-NeREF real dataset. Our baseline method for com-
parison is HDR-NeRF [5], which outperformed NeRF [12]
and NeRF-W [9] methods in LDR rendering. The quantita-
tive results of LDR novel view synthesis in Tab. 1 showed
that our method outperformed HDR-NeRF on flower and
luckycat scenes, and performed comparably on the others.
On average, our method outperforms HDR-NeRF in PSNR
(35.96 versus 35.34), and is comparable to HDR-NeRF in
SSIM (0.952 versus 0.956) and LPIPS (0.072 versus 0.068).
Note that HDR-NeRF uses the exposure times given in the
EXIF metadata, while our method learns the exposure set-
tings from scratch. Sample LDR and HDR views are shown
in Fig. 1 and in the supplemental material.

HDR-Plenoxels real and synthetic datasets. Our base-
line method for comparison is HDR-Plenoxels, which out-
performs the original Plenoxels method [3] and Approx-
imate Differentiable One-Pixel Point Rendering (ADOP)
[14] in LDR rendering. The quantitative results in Tab.
2 and Tab. 3 shows that our method outperforms HDR-
Plenoxels on most of the scenes. On average, our method
achieved higher metrics than HDR-Plenoxels (PSNR: 30.14
versus 28.73, SSIM: 0.896 versus 0.891, LPIPS: 0.139 ver-
sus 0.294). Sample renderings are shown in Fig. 2 and in
the supplemental material.

5. Conclusions and Future Work

We present a novel method of learning HDR view syn-
thesis from LDR views with unknown and varying exposure
and white balance. Besides rendering novel HDR views
without ground-truth HDR views, our method can render
LDR views that match the ground-truth exposure and white
balance. Our method outperformed previous methods in
view synthesis quality. The code and models will be pub-
licly available.

Modeling even more components of the camera pipeline,
such as the quantization and compression steps, could
further improve the reconstruction. Future work could
consider how to handle more heavily post-processed im-
ages which have a spatially-varying tone mapping function
(e.g. tone mapping faces differently from the background).
Future work also lies in analyzing how well an HDR scene
can be recovered from autoexposure video which doesn’t
systematically sample the dynamic range of the scene.
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Table 1. Results of quantitative evaluation on real scenes from HDR-NeRF. Values are the average of the metrics for the test data of each
scene. The best value of each metric are shown in bold.

Computer Flower Luckycat Box
PSNRT SSIM{ LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIMT LPIPS| PSNRT SSIMt LPIPS|

HDR-NeRF  35.17 0.945 0.093 34.98 0.964 0.050 35.31 0.948 0.072 3590  0.964 0.056
Ours 3534 0942 0.096 36.81 0.971 0.041 36.04  0.950 0.069 35.66 0.945 0.098

Type Method

(a) box (b) computer (c) luckycat (d) flower

Figure 1. Ground-truth LDR views (top row) and our tone-mapped HDR views (bottom row) from the HDR-NeRF dataset. Our tone-
mapped HDR views reveal the under-exposed and over-exposed regions of the scenes.

Table 2. Results of quantitative evaluation on synthetic scenes from HDR-Plenoxels.

Book Classroom Monk Room Kitchen

Type Method oot SSIMT  LPIPS| PSNRT SSIMT LPIPS| PSNRT SSIMT LPIPS, PSNRT SSIMT LPIPS, PSNRT SSIM| LPIPS|

HDR-Plenoxels 27.49 0.837 0292 29.87  0.908 0.284  28.27 0.852 0.297 2870  0.900 0291 31.53 0.936 0.156
Ours 28.62  0.849 0.201 28.61 0.877 0.169 27.36 0.812 0.232 3321 0.940 0.079 3530  0.961 0.068

Table 3. Results of quantitative evaluation on real scenes from HDR-Plenoxels.

Character Desk Plant Coffee
PSNR{ SSIM{ LPIPS| PSNRT SSIMt LPIPS| PSNRt SSIM? LPIPS| PSNR{ SSIM{ LPIPS|

Type Method

HDR-Plenoxels 33.14 0.960 0.343  28.32 0.907 0312  24.27 0.790 0.369 27.40 0.928 0.269
Ours 33.47 0.956 0.092 27.67 0.870 0.160 28.28 0.865 0.166 29.25 0.930 0.096

(a) kitchen - syn (b) room - syn (c) character - real (d) plant - real

Figure 2. Ground truth LDR views (top row) and our tone-mapped HDR views (bottom row) from the HDR-Plenoxels dataset.



References

(1]

(2]

(3]

(4]

(5]

(6]

[7

—

(8]

(9]

(10]

[11]

Prashant Chaudhari, Franziska Schirrmacher, Andreas
Maier, Christian Riess, and Thomas Kohler. Merging-isp:
Multi-exposure high dynamic range image signal process-
ing. In Pattern Recognition: 43rd DAGM German Con-
ference, DAGM GCPR 2021, Bonn, Germany, September
28-October 1, 2021, Proceedings, pages 328-342. Springer,
2022. 3

Paul E. Debevec and Jitendra Malik. Recovering high dy-
namic range radiance maps from photographs. In Proceed-
ings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH °97, page 369-378,
USA, 1997. ACM Press/Addison-Wesley Publishing Co. 2

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501-5510, 2022. 1,2, 3

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and
Aaron Courville. Neural autoregressive flows. In Interna-
tional Conference on Machine Learning, pages 2078-2087.
PMLR, 2018. 2

Xin Huang, Qi Zhang, Ying Feng, Hongdong Li, Xuan
Wang, and Qing Wang. Hdr-nerf: High dynamic range neu-
ral radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18398-18408, 2022. 1,2, 3

Kim Jun-Seong, Kim Yu-Ji, Moon Ye-Bin, and Tae-Hyun
Oh. Hdr-plenoxels: Self-calibrating high dynamic range ra-
diance fields. In Computer Vision—-ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XXXII, pages 384-401, 2022. 1,2, 3
James T. Kajiya and Brian P Von Herzen. Ray tracing vol-
ume densities. In Proceedings of the 11th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’84, page 165-174, New York, NY, USA, 1984.
Association for Computing Machinery. 2

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7210-7219, 2021. 2, 3

Nico Messikommer, Stamatios Georgoulis, Daniel Gehrig,
Stepan Tulyakov, Julius Erbach, Alfredo Bochicchio,
Yuanyou Li, and Davide Scaramuzza. Multi-bracket high
dynamic range imaging with event cameras. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 547-557, 2022. 3

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P Srinivasan, and Jonathan T Barron. Nerf in the dark:
High dynamic range view synthesis from noisy raw images.
In Proceedings of the IEEE/CVF Conference on Computer

(12]

(13]

(14]

(15]

(16]

Vision and Pattern Recognition, pages 16190-16199, 2022.
2

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Computer Vision-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part I, pages 405421, 2020. 1,2, 3

K Ram Prabhakar, Susmit Agrawal, Durgesh Kumar Singh,
Balraj Ashwath, and R Venkatesh Babu. Towards practical
and efficient high-resolution hdr deghosting with cnn. In
Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XXI
16, pages 497-513. Springer, 2020. 3

Darius Riickert, Linus Franke, and Marc Stamminger. Adop:
Approximate differentiable one-pixel point rendering. ACM
Transactions on Graphics (TOG), 41(4):1-14,2022. 3
Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8248-8258, 2022. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586-595, 2018. 3



	. Introduction
	. Related work
	. HDR Neural Radiance Fields without known exposures
	. Scene representation
	. Learned tone-mapping and exposures
	. Neural rendering
	. Optimization

	. Experiments
	. Experimental settings
	. Evaluation metrics and datasets
	. Evaluation results

	. Conclusions and Future Work

