Machine Learning for Florida Estuary
Biodiversity Analysis: A Cal Poly Data Science
Capstone

Edward Du
Computer Science

Ellyce Bilhorn
Statistics

Charles Ward
Computer Science

William Medwid
Statistics

Abstract

Estuary biodiversity analysis is a time intensive task for the expert ecologists at the Smithsonian Marine Station’s
Benthic Ecology Lab in Fort Pierce, Florida. To automate some of their work, we have developed an object detection
model and desktop application that will classify and count the specimens in their benthic soil samples. Our best
performing model achieved a mAP @ 50 of .583 and avg-F1 @ 50 of .643 (across 4 classes). Our desktop application
allows sample analyzers to run our model on new images using a friendly Graphical User Interface (GUI), inspect
and correct its predictions, and save the specimen counts to a standardized spreadsheet format.

I. INTRODUCTION

The biodiversity in Florida’s lagoons, estuaries, and rivers is
vital to local economies and the global climate. Unfortunately,
decades of water control projects to make land suitable for
urbanization and agriculture have decimated the Everglades’
water inflow from Lake Okeechobee. To reverse this envi-
ronmental harm, the $8.2 billion Comprehensive Everglades
Restoration Plan was enacted in 2000 to restore water flows
to the Everglades in southern Florida. While this transition
is taking place, it is vital that the ecosystems’ health and
biodiversity is monitored to ensure that the restoration is as
beneficial as possible.

The Smithsonian Marine Station’s Benthic Ecology Lab is
studying sites in the Indian River Lagoon, east of Lake Okee-
chobee, which will receive less, but cleaner, water due to the
Comprehensive Everglades Restoration Plan. They collect soil
samples from the bottom of several sites in the Indian River
Lagoon, and count the number of distinct species they find
under a microscope. These species counts are vital indicators
of ecosystem health, however the manual process of labeling
these specimens is very time intensive and requires skilled
ecology experts.

To speed up and automate portions of this task, the Benthic
Ecology Lab is partnering with our Data Science Capstone
group to use machine learning to automatically label speci-
mens. To make the model’s results accessible and useful, we
have developed a user interface for them to utilize our object
detection model and perform manual quality control on its
specimen predictions.

II. DATA DESCRIPTION

The Benthic Ecology team provided us with two types of
training images: ‘Blended Photos’ and ‘Individual Specimen
Photos’.

The Blended Photos such as Figure 2 (a) are developed from
soil samples and contain a variety of organisms. This image
type is ideal for training and testing our models as they are

the ultimate target for our tool’s operation. We were provided
with 49 of these blended photos, which collectively contain a
total of 627 individual specimens. The specimen are typically
dyed pink in these photos, but due to inconsistencies in this
process, we convert images to grayscale when training and
utilizing our models.

The Individual Specimen Photos take a variety of visual
styles: some are textbook-quality and zoomed into a clearly
lit single specimen such as those in Figure 1, while others
are similar to the Blended Photos, with many examples of a
single specimen type. We were given 920 distinct Individual
Specimen Photos, containing a total of 2069 specimens. How-
ever, the practicality of using many of these photos as training
data is questionable due to differences in lighting, detail, and
backgrounds as compared to the Blended Images we intend to
classify.

Fig. 1: Example Individual Specimen Photos: Specimen of
major groups Polychaeta (left) and Ostracoda (right)

Labeling this data was complicated by the fact that organ-
isms are sometimes broken into multiple pieces, but should
only be labeled and counted once. Particularly, Polychaeta
specimens in Blended Photos often have dismembered ap-
pendages scattered throughout their photos. These appendages
resemble the organisms they originate from but ideally should
not be double counted by our tool. Consequently, we labeled
these Polychaeta appendages and other extraneous objects
that could be confused for organisms as “Unknown”. This

(a) Example Blended Photo

(b) Example Artificial Blended Photo

Fig. 2: Example Photos

approach ensures that the bounding box regression portion of
our models does not suffer from the difficulty in distinguishing
separated appendages from the specimen they came from.

A. Class Imbalance and Diversity

The provided image data are classified at three levels: 10
distinct major groups, 113 distinct family groups, and 441
distinct species. The 10 major groups are Amphipoda, Bi-
valiva, Cumacea, Gastropoda, Insecta, Ostracoda, Other, Other
Annelida, Other Crustacea, and Polychaeta. However, the
classes were significantly imbalanced, with very few examples
of some major groups. For example, we only had 2 examples
of “Other Annelida” in our blended photos, and 14 of them
in our individual photos. Furthermore, some of these major
groups encompass such a diverse set of species with little
resemblance to one another that it may be difficult to recognize
them as the same major group. This dataset, characterized by
high-diversity and low-volume, poses substantial challenges
for accurate object recognition. See Table I for a tabular
overview of the Major Group class counts.

We only target the Amphipoda, Ostracoda, and Polychaete
Major Groups due to these dataset size limitations. All other
Major Groups and appendages/debris are treated as belonging
to a separate ‘Other’ class for the purposes of model training
and analysis.

B. Dataset Bolstering: Artificial Blended Images

The Individual Photo format presents issues for model train-
ing due to this data not being representative of the Blended
Photos. However, there being only 49 Blended Photos also
presents challenges in this small dataset size. Additionally,
the Blended Photos have an uneven distribution of specimen
classes that make it impossible to adequately split these images
into strong train, validation, and test sets.

To remedy these challenges, we used Photoshop tools to
create 24 ‘Artificial Blended Photos’ from multiple Individual
Photos to mimic the appearance of true Blended Photos. See

Figure 2 (b) for an example. For each Artificial Blended
Image, we created a realistic background by copying a real
Blended Image and digitally removing the organisms. Then,
we added individual specimen photos one by one, using
the Magic Select tool to paste the specimen without their
backgrounds. We shrunk the specimens to match their typical
sizes and applied a blur to soften their hard edges and make
them look like those pictured in real Blended Photos. Using
this technique, we were able to select the best individual
photos and turn them into information-dense training data.
Note that some of these Artificial Blended Images contained
only specimens from a single Major Group while others
contained a variety of specimen classes.

The combination of Individual Images into a single Arti-
ficial Blended Photo also helps to reduce the computational
costs of model training: many specimen examples can be
evaluated in a small batch of Artificial Blended Photos that
only require a small set of images to be loaded into memory.

TABLE II: Train/Validation/Test Split

Set Type Image Types Contained in the Set

1. Only true Blended Photos

2. All true Blended Photos and only
Artificial Blended Photos containing
primarily specimens from the 3
target classes
(Amphipoda, Ostracoda, and Polychaeta)

3. All true Blended Photos and Artificial
Blended Photos

True Blended Photos and Artificial
Blended Photos

Only true Blended Photos

Train

Validation

Testing

TABLE I: Major Group Counts by Image Type

Class Counts Image Type
Major Groups Blended Photos Artificial Blended Photos Individual Photos ~ Grand Total
Amphipoda 145 123 222 490
Bivalvia 76 87 223 386
Cumacea 15 33 48 96
Gastropoda 29 134 502 665
Insecta 0 32 35 67
Ostracoda 61 81 205 347
Other 34 87 132 253
Other Annelida 10 26 14 50
Other Crustacea 20 80 183 283
Polychaeta 172 165 491 828
Grand Total 562 848 2055 3465

C. Train/Validation/Test Split Strategy

To test the efficacy of the Artificial Blended Images, we
created 3 different training datasets as described in Table II.
The validation and test sets were held constant across each
training dataset.

III. MACHINE LEARNING MODEL

Our investigations yielded three main approaches to the
specimen counting problem: (1) algorithmic computer vision
techniques combined with standard Convolutional Neural Net-
works, (2) object detection models, and (3) image segmen-
tation models. We decided to invest most of our research
efforts into (2) object detection models after our evaluation
of the other approaches indicated either a reduced ability for
solution strength due to lack of available model complexity (1)
or a necessitated reduction in user experience quality due to
the model output not being conducive to user interaction/label
correction (3).

Object detection, as a class of machine vision tasks, is
different from commonly understood image classification tasks
because object detection models must predict regions-of-
interest (ROI) in addition to classifying those regions. It is
important that the model be very good at both of these tasks as,
using our problem as an example, specimen counts could not
be accurate if the regions-of-interest proposed for classification
are very poor, even if the actual classification stage is very
accurate.

We use the metric intersection-over-union (IOU) to de-
termine whether or not a predicted ROI matches a ground
truth object region. When evaluating model predictions, one
must set an [OU threshold above which you would consider
two regions to be ‘matched’. Predicted regions are often
redundantly layered upon one another because the region
proposal stage accurately identifies many regions that cover
the same object, and is not significantly penalized for this
repetition. As such, we perform non-max-suppression (NMS)
with a given IOU threshold on all predicted regions to filter
out these duplicate ROIs. We tune the NMS IOU threshold
and box classification confidence threshold hyperparameters

to maximize mean-average-precision (mAP) on the validation
set via a grid search algorithm.

A. Object Detector Architectures

We trained and tested three object detector architectures.
Each model was instantiated with open source COCO weights
and fine tuned by replacing and training only the final clas-
sification layer and then training the entire model at a low
learning rate until the best validation set loss was achieved.
Training loops were stopped once a new minimum validation
loss hadn’t been achieved in 5 epochs.

classifier

proposals i . ;
' Region Proposal Networ
feature maps

conv layers /

Fig. 3: Faster R-CNN Architecture

1) Faster R-CNN (Resnet 50 FPN Backbone): Faster R-
CNN defines a family of object detection models that employ
a 3 stage methodology [!]. As depicted in Figure 3, the
first step is that a backbone Convolutional Neural Network,
computes feature maps on the image. Then, these feature maps
are input to a Region Proposal Network (RPN) that performs

bounding box regression. Lastly, the pooled feature maps for
each proposed bounding box (rescaled to a preset dimension
required by the classifiers dense network layers) are input to
a classification stage usually consisting of a few convolutional
and dense network layers.

2) YOLOvS: YOLOVS is the most recent version of the
popular YOLO object detection architecture. This model per-
forms bounding box regression and classification all in a
continuous series of network layers and thus is more computa-
tionally efficient than Faster R-CNN architectures. This com-
putational effectiveness isn’t very important for our research
as our clients would rather have a model with better predictive
power than one that performs faster analysis, however, other
researchers have seen better results with YOLO than Faster
R-CNN models.

3) Hierarchical: We defined our custom hierarchical archi-
tecture as using the Faster R-CNN (Resnet 50 FPN Backbone)
for region proposals (RPN) and an EfficientNetV2 Large for
classification. The EfficientNetV2 Large is one of the current
top performing CNN architectures and is very complex. With
lIots of inter-class diversity in our data, we believed an ex-
tremely complex model such as this would perform well as it
would be able to learn the similarities between species within
each major group.

B. Model Results

Test set results for each model are displayed in Table
III. We observe our best model to be the Faster R-CNN
(ResNet 50 RPN Backbone) trained on the dataset with true
Blended Images and the Artificial Blended Images that contain
primarily the 3 target classes. This model’s test set mAP
@ 50 of .583 and avg-F1 @ 50 of .643 metric results are
average. However, we are impressed by this model’s bounding
box regression performance and believe many of the test
set misclassifications to be caused by debris and specimen
appendages in the images. These extraneous predictions will
be fairly easy for reviewers to correct and model performance
can be bettered by sample photographers cleaning the photo
area in greater detail prior to model analysis.

C. Error Analysis

As seen in Figure 4, we observe very strong bounding
box regression performance. Even when specimens are nearly
overlapping, the bounding boxes are very accurate.

Predictions

Truth

Fig. 4: Example of strong bounding box performance

Our model occasionally classifies debris or sediment incor-
rectly (Figure 5). Some of the major groups have characteristic

crust or shell like structures that are sometimes predicted to
be a separate specimen when separated from the main body.

Truth

Predictions

Fig. 5: Example of sediment misclassification errors

Occasionally, individual specimens are broken apart into
multiple pieces when photographed (Figure 6). This leads
the model to make correct but duplicate classifications of the
specimen appendages. Our ground truth data used the ‘Other’
label as reference to any object in the image other than the
3 main target classes. We see that specimen appendages in
our test set, with class label ‘Other’, are being predicted as
belonging to the class the appendage would have otherwise
resided in. The human sample photographers can help reduce
model errors by removing specimen debris and appendages
prior to taking the sample photograph. When misclassifications
are made on debris and appendages, human reviewers should
have an easy time deleting the corresponding bounding boxes
using the Sample Analyzer Application.

Predictions

::::

Fig. 6: Example of appendage misclassification errors

IV. SAMPLE ANALYZER APPLICATION
A. Motivation

1) Quality control: 1t is very important that sample analyz-
ers have a convenient way to edit model results as the model
is not accurate enough for its results to be used for ecology
analysis without manual review. We created an intuitive, easy-
to-use interface that will allow researchers to upload multiple
photos for the model to predict on, review and alter those
predictions, and save the results to Excel format. This way
the specimen labeling process can be sped up by first running
the model whilst the quality of the data recorded about the
samples is assured to be accurate by human reviewers.

Before creating the application, a detailed mock-up was
created using the design tool Figma. This allowed us to detail
all the necessary features that the application should have prior
to development. A feedback oriented relationship with the
client was maintained throughout the application development

TABLE III: Test Set Results

Model Training Dataset mAP @ 50 Avg.-F1 @ 50
Faster R-CNN ir
(ResNet50 FPN Backbone) All True and Artificial Blended Images 493 .589
Artificial Blended Images primarily
(ResNel:aSS(t)elE"IFI\-ICIIS\; ljkbone) for the 3 target classes + 0.583 0.643
all true Blended Images
Faster R-CNN
(ResNet 50 FPN Backbone) Only True Blended Images 0.529 0.621
Hierarchical: Faster R-CNN
(ResNet 50 FPN Backbone) All True and Artificial Blended Images 0.069 0.144
— EfficientNetV2 Large
YOLOVS All True and Artificial Blended Images 0.399 0.453

process so that all our client’s wishes could be incorporated
at each stage. A photo of the bounding box editor page from
the Figma mock-up can be seen in Figure 7.

2) Non-technical usage (GUI): The Sample Analyzer Ap-
plication allows ecology researchers to interact with our
machine learning model without technical knowledge about
Python or machine learning techniques. The application makes
it simple to run model analysis and review the model’s results.
The only dependency for our software is that the user must
install Python, with related packages such as Pandas and
Pytorch, as described in our installation instructions.

3) Setting up future success: The way in which the Sample
Analyzer Application allows for the correction of misclassi-
fications and bounding box errors also sets the groundwork
future model improvements. These corrected images can be
used as ground truth data that can be used to train new mod-
els and achieve stronger results. The application architecture
employs machine learning models in a plug-in manner such
that newly trained models can be easily integrated.

B. Features

1) Project Saving: Upon launching our application, users
will be presented with the option to create a new project or
upload an existing project to the application, as seen in Figure
8 (a). If the user opts to upload an existing project, they can
select a saved JSON file from their projects directory and the
bounding box editor will be populated with the previously
saved work and available to continue making revisions. If the
user chooses to create a new project, they can choose any
number of images to upload for analysis. Once the images
are uploaded, our model processes the uploaded images in
batches and generates a JSON output file. This file contains
all the information about the predictions made by the model
on the specimen within the images. Then, the user can launch
the bounding box editor to review the model output.

2) Review Model Output: The objective of the bounding
box editor is to provide the user with a straightforward way
to correct the any inaccuracies in the model’s predictions. The

editor, shown in Figure 8 (b), is an interactive canvas where
the user can create, resize, and delete bounding boxes. Upon
clicking a bounding box, the user can also edit the label. To
enhance the clarity of the editor, we created a color legend to
differentiate the colors between major groups. Additionally,
each bounding box is accompanied by text displayed in the
top-left corner, which contains the major group label and the
confidence score.

We also provide an easy way to navigate through batches of
images, by providing a drop-down selection option to select
an image to view based on its filename. Furthermore, we have
incorporated a ‘Next Image’ button and a ‘Previous Image’
in the case that the user wants to incrementally step through
images.

3) Output Organization: Upon completion of any necessary
edits to the model output, our application offers various saving
options. Users can choose to save the project for future
continuation, export the results as Excel spreadsheets, or opt
for both options. If the user chooses to save the project
metadata, they will need to save it to the designated project
directory folder within the application’s file structure. They
can then reopen the project metadata at a later time from
the applications home page to continue making revisions.
Alternatively, the user can choose to export the results into
an Excel spreadsheet, which can be saved anywhere. The
spreadsheet provides a comprehensive summary of the batch
of images, including the filename, major group, the number
of specimens within the major group, as well as total counts
of specimen major groups across all images.

V. CONCLUSION

The results obtained from the model are satisfactory, and
combined with the Sample Analyzer application, we are con-
fident that our project will expedite the specimen counting
process for the Smithsonian Benthic Ecology lab. The final
version of the application has been provided to The Smithso-
nian, and they have had time to practice working with it on
their own machines. Along with the application, we have also

* Smithsonian Institution

image_name.jpg

image 1 of 25

Major Group Count
B Gastropoda 2
B Cumacea 2
Amphipoda 2
Polychaeta 1

Fig. 7: Figma Prototype

Sample Analyzer

(a) Sample Analyzer Home Page

Bounding Box Editor

Current Image: C: al Py,
Major Group:

Images/M12_2_Apr19_3jpg

Confidence: 0

(b) Bounding Box Editor

Fig. 8: Sample Analyzer Photos

provided all of our documentation and development files to
our client so that future developers can improve this project.
A Github Organization containing repositories with all the
model training code as well as the code for building the
Electron application has been created for the client. Although
improvements can be made to this project, we are extremely
satisfied with the results we were able to accomplish and
the final product we delivered to The Smithsonian Benthic
Ecology Lab.

VI. FUTURE WORK

The first improvement that could be made to the project
is improving the model’s predictions. With the addition of
more ground truth Blended Photo data for model training,
we believe our current model’s results would improve and

additional models could be trained on the new data to better
the overall results. With more data, additional models could
also be trained that have more target classes than the current
model (i.e. all 10 major groups, specimen family groups, and
individual species classification). Image segmentation models
could also be investigated to determine if they could be more
successful than object detectors for specimen classification.

If multiple models are created in the future, another useful
improvement would be to add the ability within the application
to select which model to run the analysis on via a drop-down
menu. This could easily be implemented within our current
application design.

The client could benefit from other general improvements
to the Sample Analyzer application such as a progress bar for
the model running process. As the Benthic Ecology team uses

the application, we anticipate that they will find workflow im-
provements to suggest to future developers. If other ecologist
teams wish to use this application or modify it for their own
needs, future developers may be able to tailor this application
to alternative uses.

VII. APPENDIX
A. Application Logistics

There are many languages and frameworks that can be used
for building a desktop application, each with unique drawbacks
and benefits.

Frontend Programming Language: We examined three
primary programming languages for front-end development
purposes: Python, TypeScript, and JavaScript. Because Type-
Script is a superset of JavaScript, meaning that TypeScript
understands all of JavaScript’s syntax while also including
additional features, we do not compare Python and TypeScript.
Python vs JavaScript: The key aspects of a programming
language we were looking for were:

1) Easy-to-use

2) Well-documented

Our team has extensive experience working with Python
but limited experience with JavaScript. However, we chose
to use JavaScript because the documentation and off-the-
shelf capabilities for frontend development in Javascript is
better than that in Python. We are confident that adopting
JavaScript as the primary frontend programming language will
best enable us to meet our client’s user interface needs.
JavaScript vs TypeScript: There is a substantial difference
between the dynamic typing in Javascript and the static typing
in TypeScript. With dynamic typing, variables are not assigned
a data type until runtime, making the code more flexible
but potentially more error-prone. In contrast, static typing
requires variables to be declared with a specific data type,
providing greater clarity and reducing the chance of type-
related errors. However, our project is small enough such that
the likely reduction of type-related errors in TypeScript are
not worth the added complexity and longer development time.
Furthermore, there is not a significant performance difference
between JavaScript and TypeScript in real-world applications,
and JavaScript remains the most widely used language for
frontend development. Therefore, we have decided to utilize
JavaScript rather than Typescript as the primary language for
our application, prioritizing ease of implementation and a more
straightforward learning curve.

Desktop Application Frameworks: There are a plethora
of popular application development frameworks available for
us to choose from. However, our project requires the ap-
plication to be run exclusively on Windows machines and
must be compatible with our chosen programming language,
JavaScript.

Electron is an application development framework that is
solely focused on desktop applications and is suited well to
our purposes. Another advantage of Electron is that it runs
on a Chromium engine, which provides access to Chrome’s

developer settings. Finally, for this application, data security
is also guaranteed, because all the information is kept in the
system at a local level.

To create a user-friendly interface, we have utilized React.js,
a flexible and efficient JavaScript library. React.js provides a
wide array of off-the-shelf frontend components that we will
use.

Electron-Python communication: We use PyShell to
create a child process that executes the model script. Once the
script is finished, a model output file is written to the project
directory. The child process sends a IPC signal back to the
main process and the completion of the script is registered by
Electron and properly handled.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” 2016.

	Introduction
	Data Description
	Class Imbalance and Diversity
	Dataset Bolstering: Artificial Blended Images
	Train/Validation/Test Split Strategy

	Machine Learning Model
	Object Detector Architectures
	Faster R-CNN (Resnet 50 FPN Backbone)
	YOLOv8
	Hierarchical

	Model Results
	Error Analysis

	Sample Analyzer Application
	Motivation
	Quality control
	Non-technical usage (GUI)
	Setting up future success

	Features
	Project Saving
	Review Model Output
	Output Organization

	Conclusion
	Future Work
	Appendix
	Application Logistics

	References

